Program structure
This chapter covers the program structure of the Groovy programming language.
1. Package names
Package names play exactly the same role as in Java. They allow us to separate the code base without any conflicts. Groovy classes must specify their package before the class definition, else the default package is assumed.
Defining a package is very similar to Java:
// defining a package named com.yoursite
package com.yoursite
To refer to some class Foo
in the com.yoursite.com
package you will need to use the fully qualified name com.yoursite.com.Foo
, or else you can use an import
statement as we’ll see below.
2. Imports
In order to refer to any class you need a qualified reference to its package. Groovy follows Java’s notion of allowing import
statement to resolve class references.
For example, Groovy provides several builder classes, such as MarkupBuilder
. MarkupBuilder
is inside the package groovy.xml
so in order to use this class, you need to import
it as shown:
// importing the class MarkupBuilder
import groovy.xml.MarkupBuilder
// using the imported class to create an object
def xml = new MarkupBuilder()
assert xml != null
2.1. Default imports
Default imports are the imports that Groovy language provides by default. For example look at the following code:
new Date()
The same code in Java needs an import statement to Date
class like this: import java.util.Date. Groovy by default imports these classes for you.
The below imports are added by groovy for you:
import java.lang.*
import java.util.*
import java.io.*
import java.net.*
import groovy.lang.*
import groovy.util.*
import java.math.BigInteger
import java.math.BigDecimal
This is done because the classes from these packages are most commonly used. By importing these boilerplate code is reduced.
2.2. Simple import
A simple import is an import statement where you fully define the class name along with the package. For example the import statement import groovy.xml.MarkupBuilder in the code below is a simple import which directly refers to a class inside a package.
// importing the class MarkupBuilder
import groovy.xml.MarkupBuilder
// using the imported class to create an object
def xml = new MarkupBuilder()
assert xml != null
2.3. Star import
Groovy, like Java, provides a special way to import all classes from a package using *
, the so-called star import. MarkupBuilder
is a class which is in package groovy.xml
, alongside another class called StreamingMarkupBuilder
. In case you need to use both classes, you can do:
import groovy.xml.MarkupBuilder
import groovy.xml.StreamingMarkupBuilder
def markupBuilder = new MarkupBuilder()
assert markupBuilder != null
assert new StreamingMarkupBuilder() != null
That’s perfectly valid code. But with a *
import, we can achieve the same effect with just one line. The star imports all the classes under package groovy.xml
:
import groovy.xml.*
def markupBuilder = new MarkupBuilder()
assert markupBuilder != null
assert new StreamingMarkupBuilder() != null
One problem with *
imports is that they can clutter your local namespace. But with the kinds of aliasing provided by Groovy, this can be solved easily.
2.4. Static import
Groovy’s static import capability allows you to reference imported classes as if they were static methods in your own class:
import static Boolean.FALSE
assert !FALSE //use directly, without Boolean prefix!
This is similar to Java’s static import capability but is a more dynamic than Java in that it allows you to define methods with the same name as an imported method as long as you have different types:
import static java.lang.String.format (1)
class SomeClass {
String format(Integer i) { (2)
i.toString()
}
static void main(String[] args) {
assert format('String') == 'String' (3)
assert new SomeClass().format(Integer.valueOf(1)) == '1'
}
}
1 | static import of method |
2 | declaration of method with same name as method statically imported above, but with a different parameter type |
3 | compile error in java, but is valid groovy code |
If you have the same types, the imported class takes precedence.
2.5. Static import aliasing
Static imports with the as
keyword provide an elegant solution to namespace problems. Suppose you want to get a Calendar
instance, using its getInstance()
method. It’s a static method, so we can use a static import. But instead of calling getInstance()
every time, which can be misleading when separated from its class name, we can import it with an alias, to increase code readability:
import static Calendar.getInstance as now
assert now().class == Calendar.getInstance().class
Now, that’s clean!
2.6. Static star import
A static star import is very similar to the regular star import. It will import all the static methods from the given class.
For example, lets say we need to calculate sines and cosines for our application.
The class java.lang.Math
has static methods named sin
and cos
which fit our need. With the help of a static star import, we can do:
import static java.lang.Math.*
assert sin(0) == 0.0
assert cos(0) == 1.0
As you can see, we were able to access the methods sin
and cos
directly, without the Math.
prefix.
2.7. Import aliasing
With type aliasing, we can refer to a fully qualified class name using a name of our choice. This can be done with the as
keyword, as before.
For example we can import java.sql.Date
as SQLDate
and use it in the same file as java.util.Date
without having to use the fully qualified name of either class:
import java.util.Date
import java.sql.Date as SQLDate
Date utilDate = new Date(1000L)
SQLDate sqlDate = new SQLDate(1000L)
assert utilDate instanceof java.util.Date
assert sqlDate instanceof java.sql.Date
3. Scripts versus classes
3.1. public static void main vs script
Groovy supports both scripts and classes. Take the following code for example:
class Main { (1)
static void main(String... args) { (2)
println 'Groovy world!' (3)
}
}
1 | define a Main class, the name is arbitrary |
2 | the public static void main(String[]) method is usable as the main method of the class |
3 | the main body of the method |
This is typical code that you would find coming from Java, where code has to be embedded into a class to be executable. Groovy makes it easier, the following code is equivalent:
println 'Groovy world!'
A script can be considered as a class without needing to declare it, with some differences.
3.2. Script class
A groovy.lang.Script is always compiled into a class. The Groovy compiler will compile the class for you,
with the body of the script copied into a run
method. The previous example is therefore compiled as if it was the
following:
import org.codehaus.groovy.runtime.InvokerHelper
class Main extends Script { (1)
def run() { (2)
println 'Groovy world!' (3)
}
static void main(String[] args) { (4)
InvokerHelper.runScript(Main, args) (5)
}
}
1 | The Main class extends the groovy.lang.Script class |
2 | groovy.lang.Script requires a run method returning a value |
3 | the script body goes into the run method |
4 | the main method is automatically generated |
5 | and delegates the execution of the script on the run method |
If the script is in a file, then the base name of the file is used to determine the name of the generated script class.
In this example, if the name of the file is Main.groovy
, then the script class is going to be Main
.
3.3. Methods
It is possible to define methods into a script, as illustrated here:
int fib(int n) {
n < 2 ? 1 : fib(n-1) + fib(n-2)
}
assert fib(10)==89
You can also mix methods and code. The generated script class will carry all methods into the script class, and
assemble all script bodies into the run
method:
println 'Hello' (1)
int power(int n) { 2**n } (2)
println "2^6==${power(6)}" (3)
1 | script begins |
2 | a method is defined within the script body |
3 | and script continues |
This code is internally converted into:
import org.codehaus.groovy.runtime.InvokerHelper
class Main extends Script {
int power(int n) { 2** n} (1)
def run() {
println 'Hello' (2)
println "2^6==${power(6)}" (3)
}
static void main(String[] args) {
InvokerHelper.runScript(Main, args)
}
}
1 | the power method is copied as is into the generated script class |
2 | first statement is copied into the run method |
3 | second statement is copied into the run method |
Even if Groovy creates a class from your script, it is totally transparent for the user. In particular, scripts are compiled to bytecode, and line numbers are preserved. This implies that if an exception is thrown in a script, the stack trace will show line numbers corresponding to the original script, not the generated code that we have shown. |
3.4. Variables
Variables in a script do not require a type definition. This means that this script:
int x = 1
int y = 2
assert x+y == 3
will behave the same as:
x = 1
y = 2
assert x+y == 3
However, there is a semantic difference between the two:
-
if the variable is declared as in the first example, it is a local variable. It will be declared in the
run
method that the compiler will generate and will not be visible outside of the script main body. In particular, such a variable will not be visible in other methods of the script -
if the variable is undeclared, it goes into the groovy.lang.Script#getBinding(). The binding is visible from the methods, and is especially important if you use a script to interact with an application and need to share data between the script and the application. Readers might refer to the integration guide for more information.
Another approach to making a variable visible to all methods, is to use the
@Field annotation.
A variable annotated this way will become a field of the generated script class and,
as for local variables, access won’t involve the script Binding .
While not recommended, if you have a local variable or script field with the same name as a binding variable,
you can use binding.varName to access the binding variable.
|